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ABSTRACT

We extend the ideas of compressed sensing to nonlinear measurement
systems. In particular, we treat the problem of minimizing a general
continuously differentiable function subject to sparsity constraints. We
derive several different optimality criteria which are based on the no-
tions of stationarity and coordinate-wise optimality. These conditions
are then used to derive three numerical algorithms aimed at finding
points satisfying the resulting optimality criteria: the iterative hard
thresholding method and the greedy and partial sparse-simplex meth-
ods. The theoretical convergence of these methods and their relations
to the derived optimality conditions are studied. We then specialize our
algorithms to the problem of phase retrieval and develop an efficient
method for retrieving a signal from its magnitude only measurements.

1. INTRODUCTION

Sparsity has long been exploited in signal processing and computer
science. Despite the great interest in exploiting sparsity in various
applications, most of the work to date has focused on recovering a
sparse vector x from linear measurements of the form b = Ax (as in
standard compressed sensing problems).

In this work we study the more general problem of minimizing a
continuously differentiable objective function f : Rn → R subject to
a sparsity constraint:

(P): min f(x) s.t. ‖x‖0 ≤ s.

Here ‖x‖0 is the �0 norm of x, which counts the number of its nonzero
components. We do not assume that f is convex. This, together with
the fact that the constraint function is nonconvex and not continuous,
renders the problem difficult. We study necessary optimality condi-
tions for (P) and develop algorithms that find points satisfying these
conditions.

More specifically, we derive 3 classes of necessary optimality con-
ditions: basic feasibility, L-stationarity, and coordinate-wise (CW) op-
timality. We then show that CW-optimality implies L-stationarity for
suitable values of L, and they both imply basic feasibility. We also
present two classes of algorithms for solving (P). The first is a gen-
eralization of iterative hard thresholding (IHT), and is based on the
notion of L-stationarity. The second class of methods are based on
the concept of CW-optimality. These are coordinate descent type al-
gorithms which update the support at each iteration by one or two vari-
ables. Due to their resemblance with the celebrated simplex method
for linear programming, we refer to these methods as “sparse-simplex”
algorithms. As we show, these algorithms are as simple as IHT, while
obtaining stronger optimality guarantees. Furthermore, they can be
viewed as generalizations of matching pursuit techniques to the non-
linear setting.

Two examples of (P) that have been considered previously are
compressed sensing and phase retrieval. The phase retrieval problem
consists of recovering x from noisy measurements

yi = |〈ai,x〉|2 + wi, i = 1, . . . , N (1.1)

where wi is noise, and (ai)
N
i=1 is a set of known vectors. Since only

the magnitude of 〈ai,x〉 is measured this problem is referred to as
phase retrieval. Such problems arise in many areas of optics, where
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the detector can only measure the magnitude of the received optical
wave. Several important applications of phase retrieval include X-
ray crystallography, transmission electron microscopy and coherent
diffractive imaging [8, 4, 3].

Many methods have been developed for phase recovery [4] which
often rely on prior information on the signal, such as positivity or sup-
port constraints. One of the most popular techniques is based on al-
ternating projections, where the signal estimate is transformed back
and forth between the object and the Fourier domains. The prior in-
formation and observations are used in each domain to form the next
estimate. Two of the main approaches of this type are Gerchberg-
Saxton and Fienup [2]. In general, these methods are not guaranteed
to converge, and often require careful parameter selection.

To circumvent the difficulties associated with alternating projec-
tions, more recently, phase retrieval problems have been treated by as-
suming sparsity on the input [6] and using methods based on semidef-
inite programming (SDP) [1, 9, 5, 7]. However, due to the increase in
dimension created by the matrix lifting procedure, the SDP approach
is not suitable for large-scale problems. Furthermore, it has no general
optimality guarantees and often does not work satisfactory.

Our results for the general nonlinear recovery problem can be spe-
cialized to phase retrieval leading to an efficient method which also
yields good recovery performance. We refer to our algorithm as GES-
PAR: GrEedy Sparse PhAse Retrieval. We demonstrate through nu-
merical simulations that the proposed algorithm is both efficient and
more accurate than current techniques. We will also show results of
using GESPAR for solving the phase retrieval problem associated with
a variety of different problems in optics including sub-wavelength co-
herent diffractive imaging, Ankylography, and recovery of optical sig-
nals in coupled waveguide arrays.
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